Площадь фигур
Две фигуры называют равными, если одну их них можно так наложить на другую, что эти фигуры совпадут.
Площади равных фигур равны. Их периметры тоже равны.
Площадь квадрата
Запомните!
Для вычисления площади квадрата нужно умножить его длину на саму себя.
SEKFM = EK · EK
Формулу площади квадрата, зная определение степени, можно записать следующим образом:
Площадь прямоугольника
Запомните!
Для вычисления площади прямоугольника нужно умножить его длину на ширину.
SABCD = AB · BC
Запомните!
Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.
Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.
Площадь сложных фигур
Запомните!
Площадь всей фигуры равна сумме площадей её частей.
Задача: найти площадь огородного участка.
Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя правило выше.
Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м 2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м 2
Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м 2
Ответ: S = 65 м 2 — площадь огородного участка.
Свойство ниже может вам пригодиться при решении задач на площадь.
Запомните!
Диагональ прямоугольника делит прямоугольник на два равных треугольника.
Площадь любого из этих треугольников равна половине площади прямоугольника.
АС — диагональ прямоугольника ABCD . Найдём площадь треугольников alt=»знак треугольника» />ABC и alt=»знак треугольника» />ACD
Вначале найдём площадь прямоугольника по формуле.
S ABC = SABCD : 2
S ABC = 20 : 2 = 10 см 2
S alt=»знак треугольника» />ABC = S alt=»знак треугольника» />ACD = 10 см 2
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи «ВКонтакте».
Ирина Петренко Профиль Благодарили: 0
Сообщений: 1
Ирина Петренко
Профиль
Благодарили: 0
Сообщений: 1
Как посчитать площадь – какие способы пригодятся на стройке
С одной стороны нет ничего проще, как посчитать площадь любой поверхности (вертикальной, горизонтальной). Однако и здесь можно найти несколько нюансов и некоторые из них могут привести к трудностям. Разберём, что особенного может быть в вычислениях площади и рассмотрим несколько примеров. Прочтя этот материал, вы уже не будете плавать в этом вопросе. Заодно вспомните школьную программу с её формулами.
Почему не все так просто
Так вопрос, как рассчитать площадь любой поверхности может показаться смешным, ведь все мы учились в школе. Но не будем столь категоричными. Во-первых, со школьной скамьи многие из нас сошли со школьной скамьи очень давно. Во-вторых, не каждый раз в повседневной жизни приходится сталкиваться с необходимостью геометрических расчётов. И кое-что уже позабыто.
Ну и в третьих далеко не всегда поверхность имеет правильную форму. Тогда приходится изворачиваться, применяя более сложные приёмы расчёта. Это с квадратами и прямоугольниками все просто, но как быть в случае трапеции, треугольника и прочих сложных геометрических фигур?
Необходимость расчётов
Кто-то может задать и такой вопрос: «Собственно, а для чего потребуется рассчитать площадь?» Для этого есть определённые причины:
- Полученные данные позволят подобрать нужное количество строительных материалов, дабы не переплачивать.
- Рассчитав площадь, можно определить и объем помещения. А это уже главная характеристика, без которой не обойтись в случае выбора климатического оборудования, приборов отопления или системы вентиляции.
- Некоторые коммунальные услуги как раз учитывают площадь помещения.
- Выбор осветительных приборов, а точнее их количество, также зависит от этого рассчитываемого параметра.
С чего начинать
Самое время вспомнить школьную математику – чтобы рассчитать площадь, необходимы три параметра:
- Длина – обычно она бывает 4 либо 4,5 метра.
- Ширина – стандартное значение для большинства домов это 3 или 3,5 метра.
- Высота – в новостройках она обычно равна 2,5 метрам. А вот в постройках сталинской эпохи может составлять до 3 метров.
В решении задачи, как рассчитать площадь, не обойтись и без соответствующих инструментов:
- рулетки;
- строительного угольника;
- карандаша;
- калькулятора;
- строительного уровня.
Если планируются много писать, то вместо листка бумаги лучше взять блокнот либо тетрадь. Листики имеют свойство теряться, причём, когда нужно не всегда найдёшь их потом. Рулетка обязательно должна быть с фиксатором, иначе возникнуть сложности и процедура расчётов превратится в настоящее мучение.
Алгоритм проведения расчётов
Если все подготовлено, то можно переходить к самим расчётам. Если нужно вычислить площадь поверхности правильной формы, то здесь нет ничего сложного – эти формулы уж точно никто не позабудет.
Другое дело, когда стена, пол, потолок имеют сложные очертания. Здесь уже придётся сочетать различные приёмы. То есть поделить комнату на несколько блоков, после чего рассчитать площадь каждого из них. А далее от общей площади вычесть или прибавить их.
Вовсе не обязательно мерить длину стен строго вдоль плинтусов – замер можно проводить в любом удобном месте, если, скажем, мешает мебель. То есть выше, ниже, в середине, главное соблюсти при этом строгую параллель полу и потолку. Никаких диагоналей или наклонов! В противном случае расчёты будут неверными.
При возникновении трудностей можно всегда заручиться поддержкой кого-то из домашних.
Правильная геометрия
Каких-либо сложностей касательно того, как вычислить площадь, здесь нет. В случае простого прямоугольника достаточно замерить всего две стороны и высоту, ведь у такой фигуры противоположные стороны равны. Чтобы убедиться, что комната имеет правильные очертания, достаточно приложить к углам строительный угольник, правда не всегда удаётся получить чёткую картину.
Формула для расчёта прямоугольника известна каждому:
- S – рассчитываемая площадь;
- a – длина;
- b – ширина.
Такая формула актуальна для стен, потолка, пола, дверей, окон и прочих прямоугольных поверхностей. В случае запланированного ремонта важно получить чистые значения. Для этого следует от площади стены вычесть площадь дверей, окон. Общую площадь всей комнаты можно рассчитать по такой формуле – h(a⋅2+b⋅2). Где h – высота помещения.
С квадратом все ещё проще – достаточно замерить одну сторону и возвести её значение в квадрат.
Помещения с неправильными очертаниями
Но как посчитать площадь комнаты, если она имеет неправильную форму поверхностей? Здесь есть некоторые нюансы:
- Стены. В мансардной комнате стена может иметь форму трапеции или треугольника.
- Потолок. В тех же мансардных помещениях данная плоскость может быть под определённым углом. Также есть варианты с ломаной поверхностью, когда несколько плоскостей пересекаются межу собой.
Но ничего страшного здесь нет и не нужно углубляться в тригонометрию. Достаточно любую сложную поверхность стен или потолка визуально разделить на несколько простых плоскостей. После этого остаётся рассчитать площадь каждой фигуры и сложить их вместе.
Для облегчения ниже приведём несколько формул площадей, которые могут пригодиться:
Круг:
- S=π⋅R² – нужен только радиус.
- Сектор круга определятся так – S=0,5pr.
Параллелограмм:
- S=a⋅b⋅sin(α) – по двум сторонам и углу между ними.
- S=a⋅h – по высоте и основанию.
Треугольник:
- S=0,5⋅b⋅h – по основанию и высоте.
- S=0,5⋅ab⋅sin(α) – по сторонам и углу.
- S=√(p·(p-a)·(p-b)·(p-c)) – формула Герона по трем сторонам.
Трапеция:
- S=0,5⋅h⋅(a+b) – по высоте и основанию.
- S=m⋅h – по средней линии и высоте.
Эллипс:
- S = π⋅R1⋅R2 – по двум радиусам R1 и R2
- S=π⋅a⋅b – через полуоси a и b.
Обозначения: π – 3,14159 (всем известное число пи), R – радиус, a, b, c – стороны фигуры, p – полупериметр (для формулы Герона), h – высота, m – средняя линия.
Простое решение вопроса
Как высчитать квадратный метр стен, потолка или пола, если нет свободного времени, в особенности, когда имеешь дело со сложными фигурами, но есть интернет? В этом случае задача существенно упрощается. В сети можно найти кучу онлайн-калькуляторов, которые проведут все расчёты за несколько секунд. Все что нужно – это задать нужные параметры.
Для удобства все измерения указываются в разных единицах измерения, исходя из конкретных нужд. С их помощью любого такого калькулятора легко рассчитать не только площадь помещений, но и земельных участков. Кроме того, полученный результат можно преобразовать в любую другую нужную единицу измерения.
Видео описание
Для наглядности ниже подробная инструкция расчёта площади с разными примерами:
Краткий итог
Проблем с расчётом площади нужных поверхностей возникнуть не должно, если следовать правилу – от сложного к простому. Именно в этом и кроется успех больших достижений человечества. Не нужно все усложнять, достаточно проявить волю и смекалку и тогда любая задача, какой бы она ни была, будет решена.
Формула площади
Геометрия, как часть математики, рассматривает целый ряд геометрических фигур: круг, квадрат, прямоугольник, треугольник и многих других.
Геометрические фигуры являются множеством точек на плоской поверхности, которые соединяются прямыми и на выходе становятся разными фигурами с разными особенностями.
Параметры геометрических фигур, такие как длины сторон, периметр, площадь, можно находить разными способами в зависимости от типа фигуры.
Площадь — параметр измерения геометрической фигуры, который передает информацию о ее размере.
Площадь в геометрии обозначается знаком S, от английского square — площадь. Понятием площади пользуются как люди науки — математики, физики, так и люди рабочих профессий, например, строители.
Данная характеристика измеряется в единицах измерения в квадрате, например, квадратный сантиметр (см2), квадратный метр (м2), гектар (га).
Квадрат и прямоугольник являются фигурами, у которых есть по 4 прямых угла. Их отличает только длина сторон — у прямоугольника не все 4 стороны равны, они равны попарно относительно противоположных.
Площадь правильно построенного прямоугольника можно найти через перемножение его сторон друг на друга.
Формула нахождения площади прямоугольника будет записана следующим образом:
Площадь квадрата можно найти двумя способами:
- по длине стороны в квадрате;
- по длине диагонали.
Расчет площади квадрата по длине стороны в квадрате:
Формула площади квадрата через его диагонали:
Площадь круга можно найти двумя способами:
- через радиус;
- через диаметр.
Радиус является отрезком, соединяющим центр окружности и точку на самой окружности.
Вычисление площади круга по радиусу будет производиться по формуле:
Формула площади круга через диаметр:
Эллипс отличается от круга тем, что его радиусы и диагонали не равны, так как некоторые его части находятся на большем отдалении от цента, чем другие.
Для нахождения площади эллипса необходимо знать его оси.
Осями эллипса являются диагонали эллипса, проведенные через самые ближние точки самого эллипса и центр и через самые дальние точки самого эллипса и центр.
Подсчет площади эллипса происходит через произведение длин большой и малой полуосей эллипса и числа пи:
Формула площади для параллелограмма, ромба и трапеции
Параллелограмм, ромб и трапеция отличаются от квадрата и прямоугольника тем, что не все их углы имеют 90°. Из-за этого их площадь изменится, даже при равных значениях сторон, по отношению к площади квадрата и прямоугольника.
Параллелограмм является четырехугольником, чьи стороны попарно параллельны. Частными случаями данной фигуры являются прямоугольник, квадрат и ромб.
Площадь параллелограмма можно найти тремя способами:
- через сторону и высоту;
- через две стороны и величину угла между ними;
- через диагонали и угол между ними.
Формула площади параллелограмма через сторону и высоту приобретет следующий вид:
где a — сторона, к которой проведена высота,
h — высота непосредственно.
Посчитать площадь параллелограмма через две стороны и угол между ними можно так:
Нахождение площади параллелограмма через диагонали и угол между ними:
где d1 и d2 — это диагонали параллелограмма,
y — угол между ними.
Ромб является частным случаем параллелограмма, чьи стороны равны.
Его площадь можно найти тремя способами:
- по длине стороны и высоте;
- по длине стороны и углу;
- по длинам его диагоналей.
Формула площади ромба по стороне и высоте выглядит так же, как и площадь параллелограмма по таким же характеристикам, с условием, что все высоты ромба будут равны:
Формула площади ромба через длину сторон и углу между ними похожа на соответствующую формулу площади параллелограмма с условием того, что стороны равны, а значит их перемножение можно заменить квадратом величины стороны:
Считать площадь ромба через диагонали можно так:
Трапеция имеет четыре угла, которые не равны между собой, но в сумме дают 360°. Две стороны данной фигуры параллельны, а две другие — нет. Параллельные стороны считаются основаниями трапеции, непараллельные — боковыми сторонами.
Площадь трапеции можно найти двумя способами:
- по формуле Герона;
- по длине основ и высоте.
Формула Герона для трапеции:
Узнать площадь ромба по длине основ и высоте можно по формуле:
Формула площади треугольника по гипотенузе и острому углу
Треугольник является геометрической фигурой, имеющей три угла и три прямых, соединяющих их. Все треугольники делятся:
- по величине углов на острые, тупые и прямоугольные;
- по числу равных сторон на разносторонние, равносторонние и равнобедренные.
Одной из возможных формул нахождения площади треугольника является формула:
где c — гипотенуза,
Через сторону и высоту:
Через три стороны:
где р — полупериметр.
Через две стороны и угол между ними:
Через три стороны и радиус описанной окружности:
где p — полупериметр.
Следует отметить, что находить площадь геометрических фигур можно через другие фигуры, когда, например, их разбивают на части. Так, площадь квадрата можно найти, сложив площади двух треугольников, а площадь параллелограмма — через сумму площади двух треугольников и прямоугольника или квадрата.
Примеры решения задач
Сколько квадратных баночек с площадью основания 0,1 м2 поместится в коробке со стороной 30 см?
Решение: Задача 2
Известно, что по диагонали квадратной танцевальной площадки по заданию проектировщика должна висеть деревянная перегородка. Длина заранее купленной перегородки составляет 6 м. Какова площадь самой площадки?
Решение: Задача 3
Стороны картины — 18 и 35 сантиметров. Какова будет площадь стекла, накрывающего картину, если известно, что свободные бортики вокруг картины должны составлять по 3 сантиметра с каждой стороны?
Какова площадь круглой площади в центре города, если известно, что мужчина со средним шагом в 50 сантиметров дойдет от ее середины до края за 10 шагов?
Решение: Задача 5
Одно из стекол круглых очков разбилось. Мастер измерил диаметр сохранившегося стекла и пришел к выводу, что он равен 3 см. Какова должна быть площадь нового стекла, которое для очков вырежет мастер?
Решение: Задача 6
Помещение в виде эллипса решили засыпать песком. На один м2 уходит 1 мешок песка. Сколько потребуется песка на помещение с осями эллипса 20 и 36 м?
Как найти площадь фигуры
В мире геометрии фигуру определяют как множество точек на плоскости, часть плоскости или кривой поверхности, ограниченной со всех сторон. В реальной жизни мы окружены многообразием предметов, которые можно назвать фигурами: мобильный телефон, холодильник, летучий змей. В этой статье расскажем, как искать площадь разными способами.
· Обновлено 9 августа 2023
Обозначение площади
Площадь — это одна из характеристик замкнутой геометрической фигуры, которая дает нам информацию о ее размере. S (square) — знак площади.
Если параметры фигуры переданы в разных единицах измерения длины, мы не сможем решить ни одну задачу. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.
Популярные единицы измерения площади:
- квадратный миллиметр (мм 2 );
- квадратный сантиметр (см 2 );
- квадратный дециметр (дм 2 );
- квадратный метр (м 2 );
- квадратный километр (км 2 );
- гектар (га).
Круг — это множество точек на плоскости, ограниченных окружностью, удаленных от центра на равном радиусу расстоянии. Радиусом принято называть отрезок, соединяющий центр с любой точкой окружности.
S = π × r 2 , где r — это радиус, π — это константа, которая равна отношению длины окружности к диаметру, она всегда равна 3,14.
S = &pi × d 2 : 4;, где d — это диаметр.
S = L 2 : (4 × π), где L — это длина окружности.
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Треугольник
Треугольник — это геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой, соединенных тремя отрезками. Эти три точки принято называть вершинами, а отрезки — сторонами. Рассчитать площадь треугольника можно несколькими способами по исходными данным, давайте их рассмотрим.
1. Если известна сторона и высота.
S = 0,5 × a × h, где a — длина основания, h — высота, проведенная к основанию.
Основание может быть расположено иначе, например так:
При тупом угле высоту можно отразить на продолжение основания:
При прямом угле основанием и высотой будут его катеты:
2. Если известны две стороны и синус угла.
S = 0,5 × a × b * sinα, где a и b — две стороны, sinα — синус угла между ними.
3. Если есть радиус описанной окружности.
S = (a × b × с) : (4 × R), где a, b и с — стороны треугольника, а R — радиус описанной окружности.
4. Если есть радиус вписанной окружности.
S = p × r, где р — полупериметр треугольника, r — радиус вписанной окружности.
Прямоугольник
Прямоугольник — это параллелограмм, у которого все углы прямые. Узнать площадь прямоугольника помогут следующие формулы:
S = a × b, где a, b — длина и ширина прямоугольника.
S = a × √(d 2 — а 2 ), где а — известная сторона, d — диагональ.
Диагональ — это отрезок, который соединяет вершины противоположных углов. Она есть во всех фигурах, число вершин которых больше трех.
S = 0,5 × d 2 × (), где d — диагональ, α — угол между диагоналями.
Квадрат
Квадрат — это тот же прямоугольник, но при условии, что все его стороны равны. Найти его площадь легко:
S = а 2 , где a — сторона квадрата.
S = d 2 : 2, где d — диагональ.
Трапеция
Трапеция — это четырехугольник, у которого две стороны параллельны и две не параллельны.
S = 0,5 × (a + b) × h, где a, b — два разных основания, h — высота трапеции.
Построить высоту трапеции можно, начертив отрезок так, чтобы он соединил параллельные стороны под прямым углом.
Параллелограмм и ромб
Параллелограмм — четырехугольник, противоположные стороны которого попарно параллельны.
Ромб — это параллелограмм, у которого все стороны равны.
Расскажем про общие формулы расчета площади этих фигур.
S = a × h, где a — сторона, h — высота.
S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
Для ромба: S = 0,5 × (d1 × d2), где d1, d2 — две диагонали. Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.