Лямбда а и б теплопроводность что это
Перейти к содержимому

Лямбда а и б теплопроводность что это

  • автор:

Коэффициент теплопроводности λ мин. утеплителя

У меня такой вопрос. Теперь в ГОСТ 9573-2012 вместо одного значения лямбда теперь дается 3 разных — для 10, 25 и 125 град цельсия.
Какую величину брать? Какая приведена в СП 50.13330.2012 "Тепловая защита зданий"? для 25 град?

Заранее спасибо за ответы

Евгений Сайфутдинов
Посмотреть профиль
Найти ещё сообщения от Евгений Сайфутдинов
Bonussandro
Посмотреть профиль
Найти ещё сообщения от Bonussandro
предназначенные для тепло- и звукоизоляции ограждающих строительных конструкций жилых (в т.ч. индивидуальных), общественных и производственных зданий и сооружений в условиях, исключающих контакт изделий с воздухом внутри помещений, для изготовления трехслойных панелей, а также для тепловой изоляции промышленного оборудования с температурой изолируемой поверхности от минус 60 °С до плюс 400 °С

Здравствуйте!
В справочных данных производителя теплопроводность минваты Изоруф-В дана в Вт/м.К . А в нормативах требуется в Вт/м.ºС
Как перевести 0,045 в Вт/м.ºС ?

Что мы знаем о лямбде?

Если статья с таким названием появляется на сайте какой-либо компании, то можно с большой степенью вероятности утверждать, что компания имеет отношение к строительству, а речь ,скорее всего, пойдет о теплопроводности теплоизоляционных материалов. Точнее о коэффициенте теплопроводности.

Нет другой такой характеристики теплоизоляционных материалов, которая так прочно связана со своим обозначением – λ (ля́мбда, греч. λάμδα, λάμβδα) — 11-я буква греческого алфавита. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Все интересуются плотностью теплоизоляции, но никто не спрашивает: «Какая гамма(ϒ) или ро(ρ)?». Все так и спрашивают: «У ПЕНОПЛЭКСА КРОВЛЯ какая плотность?». А если интересует коэффициент теплопроводности, то можно спросить: «У ВЕНТИ БАТТС ОПТИМА какая лямбда?». И всем всё понятно. Или не всё и не всем. Почему? Дело в том, что у всякого «уважающего себя» теплоизоляционного материала есть (должно быть) несколько разных коэффициентов теплопроводности.

Немного физики. Распространение теплоты (тепловой энергии) в природе происходит посредством трех процессов: теплопроводности, конвекции и теплового излучения.

Процесс теплопроводности в чистом виде имеет место лишь в твердых телах. Процесс конвекции происходит в текучих средах при перемещении объёмов жидкости или газа в пространстве. Соответственно и описываются они разными уравнениями на основании разных законов физики. Но есть и общая закономерность – теплопроводность зависит от температуры.

Вернемся к теплоизоляционным строительным материалам, которые, как правило, имеют пористую или волокнистую структуру. Поэтому они не вполне твердые тела, а некие композиционные материалы, включающие в себя воздушную (газовую) составляющую с разной степенью влажности, вплоть до появления жидкой фазы. Применение уравнений теплопроводности к таким материалам является достаточно условным. Условной также является величина коэффициента теплопроводности такого материала. Эта величина имеет смысл коэффициента теплопроводности некоторого однородного тела, через которое при одинаковых форме, размерах и температурах на границах проходит тоже количество тепла, что и через данное пористое (волокнистое) тело.

Следует также отметить, что теплоизоляционные материалы – это промышленная продукция, производимая из разного сырья по различным технологиям на разном оборудовании. Поэтому величина коэффициента теплопроводности для каждого конкретного теплоизоляционного материала может быть определена только опытным путем при определенной температуре и влажности. Для того, чтобы сравнивать значения коэффициентов теплопроводности различных материалов их надо измерять при одинаковых условиях.

По европейским стандартам определяется λ10 – коэффициент теплопроводности в сухом состоянии при температуре 10°С (283°К). По-видимому эта температура выбрана потому, что при температуре окружающей среды в 10°С возникает необходимость отапливать дома, а, следовательно, и сберегать тепло. Надо отметить, что с падением температуры окружающей среды коэффициент теплопроводности (например λ-5 ) будет уменьшаться (улучшаться с точки зрения теплоизолирующей способности материала) при одинаковой влажности. Можно сказать, что λ10 – это «наихудший» коэффициент теплопроводности. Станет холоднее и теплоизоляция «заработает» лучше.

Согласно требованиям нормативных документов Российской Федерации определяется λ25 – коэффициент теплопроводности в сухом состоянии при температуре 25°С (298°К). Эта величина еще более «строгая» по отношению к теплоизоляционным материалам – в реальности они «работают», то есть сберегают тепло при температурах гораздо ниже 25°С.

Учитывая общую глобализацию, взаимопроникновение капиталов и технологий, активную внешнюю торговлю, производители теплоизоляции указывают, как правило, оба коэффициента: λ10 и λ25, что позволяет оценить «устойчивость» теплоизоляционного материала к изменению температуры. Как правило, чем материал менее плотный, тем разница между λ10 и λ25 больше. Но оба эти коэффициента теплопроводности, по сути, лишь характеристики теплоизоляционных материалов, произведенных на заводе, упакованных в пачки и сложенных на складе.

Для теплотехнического расчета необходима величина расчетного значения коэффициента теплопроводности при условиях эксплуатации А и Б по СП 50.13330.2012 «Строительная климатология» — λА и λБ. Эти значения определяются при 25°С (298°К) и при разном расчетном массовым отношением влаги в материале. Для минеральной ваты это 2% и 5% соответственно. Для других материалов массовое отношение влаги может быть иным. СП «Строительная климатология» рекомендует большинства территорий условия эксплуатации Б. Поэтому, когда мы спрашиваем: «Какая лямбда у ФАСАД БАТТС ЭКСТРА?», в абсолютном большинстве случаев нас интересует именно λБ. Здесь пока шла речь о теплоизоляционных материалах, эксплуатируемых в природных условиях, так называемой, строительной теплоизоляции.

Отдельно надо сказать о теплоизоляционных материалах, работающих при повышенных или пониженных температурах. Это, так называемая, техническая изоляция, используемая для поддержания необходимой температуры при различных технологических процессах. Так, например, для навивных минераловатных цилиндров, предназначенных для теплоизоляции горячих трубопроводов, определяются коэффициенты теплопроводности при температурах до 350°С. Они так и обозначаются: λ100, λ125, …, λ300, λ350. Для других видов технической изоляции определяются свои коэффициенты теплопроводности в зависимости от назначения и условий применения.

Таким образом, необходимое расчетное значение коэффициента теплопроводности λнеобходимое определяется назначением и условиями эксплуатации и является обязательной технической характеристикой теплоизоляционного материала.

Теплоизоляция — характеристики и ключевые понятия

Существует огромное количество технических характеристик утеплителей, включая специфические для каждого отдельно взятого вида. Мы останавливается на самых значимых с эксплуатационной точки зрения.

Теплопроводность

Теплопроводность — способность материала проводить тепло. Обозначается греческой буквой «лямбда» (λ). Единицей измерения коэффициента теплопроводности является Вт/(м·K). Чем ниже теплопроводность утеплителя, тем он эффективнее, у более «холодного» утеплителя теплопроводность будет выше.

Различают следующие разновидности коэффициента теплопроводности:

  • λ10 — теплопроводность сухого материала при 10°C;
  • λ25 — теплопроводность сухого материала при 25°C;
  • λА — теплопроводность материала при 25°C и влажности 2%;
  • λБ — теплопроводность материала при 25°C и влажности 5%.

В средней полосе России, толщину утепления рассчитывают по показателю λБ. Сравнивать энергоэффективность различных утеплителей следует именно по этому показателю.

Теплопроводность – это самая важная характеристика утеплителя, которая и определяет его энергоэффективность. Лямбда Б, на которую мы ориентируемся при теплотехническом расчете – параметр, учитывающий энергоэффективность утеплителя в неблагоприятных условиях, которые могут возникнуть при эксплуатации.

Точка росы

Точка росы — температура, при которой конденсируется водяной пар. Зависит этот показатель от двух основных факторов: температуры и влажности воздуха. При правильном теплотехническом расчете, точка росы должна приходиться на утеплитель.

Если точка росы будет находится в несущей конструкции, это приведет к увлажнению внутренней поверхности стены, что повлечет за собой образование грибка, плесени и ускоренному износу строительной конструкции.

Паропроницаемость

Паропроницаемость – способность материала задерживать или пропускать пар. Обозначается греческой буквой «мю» (μ). Единицей измерения коэффициента паропроницаемости является мг/(м·ч·Па). Если утеплитель обладает высокой паропроницаемостью, то его называют «дышащим» утеплителем.

Паропроницаемость утеплителя позволяет выводить влагу из конструкции. При этом в эксплуатации такой конструкции проблем не возникнет, если точка росы находится в утеплителе, а в помещении обеспечивается нормальный воздухообмен. При несоблюдении данных требований возможно появление плесени и ускоренный износ конструкции дома.

Долговечность

Долговечность — способность материала или конструкции длительно сохранять первоначальные функциональные характеристики. Срок службы утеплителя определяется видом конструкции и условиями эксплуатации, поэтому долговечность следует прогнозировать для каждого конкретного случая. В целом полимерные утеплители более долговечны по сравнению с волокнистыми, при этом качественный волокнистый утеплитель может прослужить десятки лет, если не подвергается сильным эксплуатационным нагрузкам.

Прочность

Прочность – способность материала сопротивляться разрушению под воздействием механической нагрузки. Измеряется приложенной к материалу силой в кПа (килопаскалях).

Самые распространенные для утеплителей параметры прочности:

  • Прочность на сжатие при 10% деформации
  • Прочность на разрыв слоев

В случае прочности на сжатие сила, приложенная к материалу, сжимает его, а, в случае разрыва, приводит к отрыву слоев утеплителя. Минимальная нагрузка, при которой испытываемый образец деформируется больше установленных норм, и будет считаться реальным значением его прочности.

Усадка

Усадка — уменьшение размеров и объема материалов вследствие намокания и потери влаги, вибрации, ветровой нагрузки, уплотнения под собственным весом и подобных процессов. Усадке подвержены легкие волокнистые утеплители.

При правильном выборе типа конструкции и качественном монтаже усадка возникать не будет.

Гигроскопичность утеплителя

Гигроскопичность – способность материала впитывать влагу из воздуха. Измеряется отношением массы поглощенной влаги к массе сухого материала при относительной влажности воздуха 100% и температуре +20°С. Влияет на энергоэффективность утеплителя. Чем больше влажность утеплителя, тем его теплопроводность выше, тем ниже энергоэффективность конструкции.

Данное свойство в первую очередь касается минеральной ваты и пенопласта, оба эти утеплители являются гигроскопичными, именно поэтому они уступают по энергоэффективности XPS и PIR.

Следует различать такие свойства, как гигроскопичность (влага из воздуха) и влагопоглощение (прямой контакт с влагой). Так как прямой контакт с водой при нормальной эксплуатации утеплителя возможен только для XPS в фундаменте, рассматривать свойство влагопоглощения как сравнительную характеристику нецелесообразно.

Горючесть утеплителя

Горючесть утеплителя – способность материала к развитию процесса горения. Нас же интересуют противопожарные свойства теплоизоляции, т.е. ее способность к самозатуханию и остановке процесса горения.

Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Что такое коэффициент теплопроводности и для чего он нужен? Что значит «при 10 °С» или «при 100 °С»? Как правильно сравнить теплопроводность материалов. Первая статья Дмитрия Абрамова из серии «Своя теплоизоляция».

Что такое коэффициент теплопроводности

Точное определение коэффициента теплопроводности дано в своде правил СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов».

Коэффициент теплопроводности — количество теплоты, передаваемое за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице.
Из СП 61.13330.2012

Здесь использованы следующие понятия:

Коэффициент — относительная величина, определяющая свойство какого-нибудь процесса или устройства.

Теплопроводность — свойство передавать теплоту от нагретых участков к более холодным.

Изотермическая поверхность — поверхность, температура которой одинакова во всех точках.

Температурный градиент — перепад температур.

По сути, это расчетный коэффициент, который показывает, сколько тепла проводит материал. Коэффициент теплопроводности обозначается символом λ (лямбда).

Для чего нужен коэффициент теплопроводности

Когда вы видите, что коэффициент тепловодности одного материала при 10 °С равен 0,034 Вт/мК, а другого 0,036 Вт/мК, при тех же условиях. Что это означает?

Благодаря коэффициенту теплопроводности вы можете сравнить, какой материал передает больше теплоты, а какой меньше. Чем меньше теплопроводность материала, тем лучшими теплоизоляционными свойствами он обладает.

Для примера сравните коэффициент теплопроводности материалов ALMALEN при 10 °С с другими вспененными полиэтиленами. Он имеет наименьшую теплопроводность в своем классе: от 0,032 Вт/мК до 0,034 Вт/мК.

А если пойти дальше, то коэффициент теплопроводности даст понимание, как изменяется количество передаваемого тепла через один и тот же материал в зависимости от температуры на поверхности изолируемого объекта. Количество передаваемого материалом тепла за промежуток времени называется тепловым потоком.

Определение теплового потока дано в ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме».

Тепловой поток — количество теплоты, проходящее через образец в единицу времени.
Из ГОСТ 7076-99

Что значит λ10, λ20, λ100 и так далее

Подробно разобраться в вопросе помогут нормативные документы. Возьмем, например, ГОСТ 32025-2012 (EN ISO 8497:1996) «Тепловая изоляция. Метод определения характеристик теплопереноса в цилиндрах заводского изготовления при стационарном тепловом режиме». Согласно этому методу:

λ10 — это коэффициент теплопроводности, полученный в результате испытаний при среднеарифметическом значении температуры теплоизоляции 10 °С. Среднеарифметическое значение температуры теплоизоляции — сумма температур на изолируемой поверхности и внешней поверхности теплоизоляции, разделенная пополам.

λ100 означает, что испытания проведены при среднеарифметическом значении температуры теплоизоляции 100 °С.

Как правильно сравнивать коэффициент теплопроводности разных материалов

Существуют различные методы определения коэффициента теплопроводности. При сравнении материалов необходимо всегда обращать внимание на сопоставимость и применимость таких методов. То есть необходимо сравнивать коэффициенты теплопроводности, взятые при одной и той же температуре и определенные по одному и тому же стандарту.

Например, по ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме» обычно определяют коэффициент теплопроводности при 25 °С. В то же время большинство европейских стандартов, например EN 12667:2001, определяют коэффициент теплопроводности при 10 °С.

Коэффициент теплопроводности одного и того же материала, измеренный при меньшей температуре, будет всегда иметь меньшее значение и выглядеть якобы предпочтительнее.

Когда кто-то сравнивает различные материалы по непонятно каким коэффициентам теплопроводности — бегите от такого «специалиста». В лучшем случае вы потеряете время.

Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Что такое коэффициент теплопроводности и для чего он нужен? Что значит «при 10 °С» или «при 100 °С»? Как правильно сравнить теплопроводность материалов. Первая статья Дмитрия Абрамова из серии «Своя теплоизоляция».

Что такое коэффициент теплопроводности

Точное определение коэффициента теплопроводности дано в своде правил СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов».

Коэффициент теплопроводности — количество теплоты, передаваемое за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице.
Из СП 61.13330.2012

Здесь использованы следующие понятия:

Коэффициент — относительная величина, определяющая свойство какого-нибудь процесса или устройства.

Теплопроводность — свойство передавать теплоту от нагретых участков к более холодным.

Изотермическая поверхность — поверхность, температура которой одинакова во всех точках.

Температурный градиент — перепад температур.

По сути, это расчетный коэффициент, который показывает, сколько тепла проводит материал. Коэффициент теплопроводности обозначается символом λ (лямбда).

Для чего нужен коэффициент теплопроводности

Когда вы видите, что коэффициент тепловодности одного материала при 10 °С равен 0,034 Вт/мК, а другого 0,036 Вт/мК, при тех же условиях. Что это означает?

Благодаря коэффициенту теплопроводности вы можете сравнить, какой материал передает больше теплоты, а какой меньше. Чем меньше теплопроводность материала, тем лучшими теплоизоляционными свойствами он обладает.

Для примера сравните коэффициент теплопроводности материалов ALMALEN при 10 °С с другими вспененными полиэтиленами. Он имеет наименьшую теплопроводность в своем классе: от 0,032 Вт/мК до 0,034 Вт/мК.

А если пойти дальше, то коэффициент теплопроводности даст понимание, как изменяется количество передаваемого тепла через один и тот же материал в зависимости от температуры на поверхности изолируемого объекта. Количество передаваемого материалом тепла за промежуток времени называется тепловым потоком.

Определение теплового потока дано в ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме».

Тепловой поток — количество теплоты, проходящее через образец в единицу времени.
Из ГОСТ 7076-99

Что значит λ10, λ20, λ100 и так далее

Подробно разобраться в вопросе помогут нормативные документы. Возьмем, например, ГОСТ 32025-2012 (EN ISO 8497:1996) «Тепловая изоляция. Метод определения характеристик теплопереноса в цилиндрах заводского изготовления при стационарном тепловом режиме». Согласно этому методу:

λ10 — это коэффициент теплопроводности, полученный в результате испытаний при среднеарифметическом значении температуры теплоизоляции 10 °С. Среднеарифметическое значение температуры теплоизоляции — сумма температур на изолируемой поверхности и внешней поверхности теплоизоляции, разделенная пополам.

λ100 означает, что испытания проведены при среднеарифметическом значении температуры теплоизоляции 100 °С.

Как правильно сравнивать коэффициент теплопроводности разных материалов

Существуют различные методы определения коэффициента теплопроводности. При сравнении материалов необходимо всегда обращать внимание на сопоставимость и применимость таких методов. То есть необходимо сравнивать коэффициенты теплопроводности, взятые при одной и той же температуре и определенные по одному и тому же стандарту.

Например, по ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме» обычно определяют коэффициент теплопроводности при 25 °С. В то же время большинство европейских стандартов, например EN 12667:2001, определяют коэффициент теплопроводности при 10 °С.

Коэффициент теплопроводности одного и того же материала, измеренный при меньшей температуре, будет всегда иметь меньшее значение и выглядеть якобы предпочтительнее.

Когда кто-то сравнивает различные материалы по непонятно каким коэффициентам теплопроводности — бегите от такого «специалиста». В лучшем случае вы потеряете время.

Что мы знаем о лямбде?

Если статья с таким названием появляется на сайте какой-либо компании, то можно с большой степенью вероятности утверждать, что компания имеет отношение к строительству, а речь ,скорее всего, пойдет о теплопроводности теплоизоляционных материалов. Точнее о коэффициенте теплопроводности.

Нет другой такой характеристики теплоизоляционных материалов, которая так прочно связана со своим обозначением – λ (ля́мбда, греч. λάμδα, λάμβδα) — 11-я буква греческого алфавита. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Все интересуются плотностью теплоизоляции, но никто не спрашивает: «Какая гамма(ϒ) или ро(ρ)?». Все так и спрашивают: «У ПЕНОПЛЭКСА КРОВЛЯ какая плотность?». А если интересует коэффициент теплопроводности, то можно спросить: «У ВЕНТИ БАТТС ОПТИМА какая лямбда?». И всем всё понятно. Или не всё и не всем. Почему? Дело в том, что у всякого «уважающего себя» теплоизоляционного материала есть (должно быть) несколько разных коэффициентов теплопроводности.

Немного физики. Распространение теплоты (тепловой энергии) в природе происходит посредством трех процессов: теплопроводности, конвекции и теплового излучения.

Процесс теплопроводности в чистом виде имеет место лишь в твердых телах. Процесс конвекции происходит в текучих средах при перемещении объёмов жидкости или газа в пространстве. Соответственно и описываются они разными уравнениями на основании разных законов физики. Но есть и общая закономерность – теплопроводность зависит от температуры.

Вернемся к теплоизоляционным строительным материалам, которые, как правило, имеют пористую или волокнистую структуру. Поэтому они не вполне твердые тела, а некие композиционные материалы, включающие в себя воздушную (газовую) составляющую с разной степенью влажности, вплоть до появления жидкой фазы. Применение уравнений теплопроводности к таким материалам является достаточно условным. Условной также является величина коэффициента теплопроводности такого материала. Эта величина имеет смысл коэффициента теплопроводности некоторого однородного тела, через которое при одинаковых форме, размерах и температурах на границах проходит тоже количество тепла, что и через данное пористое (волокнистое) тело.

Следует также отметить, что теплоизоляционные материалы – это промышленная продукция, производимая из разного сырья по различным технологиям на разном оборудовании. Поэтому величина коэффициента теплопроводности для каждого конкретного теплоизоляционного материала может быть определена только опытным путем при определенной температуре и влажности. Для того, чтобы сравнивать значения коэффициентов теплопроводности различных материалов их надо измерять при одинаковых условиях.

По европейским стандартам определяется λ10 – коэффициент теплопроводности в сухом состоянии при температуре 10°С (283°К). По-видимому эта температура выбрана потому, что при температуре окружающей среды в 10°С возникает необходимость отапливать дома, а, следовательно, и сберегать тепло. Надо отметить, что с падением температуры окружающей среды коэффициент теплопроводности (например λ-5 ) будет уменьшаться (улучшаться с точки зрения теплоизолирующей способности материала) при одинаковой влажности. Можно сказать, что λ10 – это «наихудший» коэффициент теплопроводности. Станет холоднее и теплоизоляция «заработает» лучше.

Согласно требованиям нормативных документов Российской Федерации определяется λ25 – коэффициент теплопроводности в сухом состоянии при температуре 25°С (298°К). Эта величина еще более «строгая» по отношению к теплоизоляционным материалам – в реальности они «работают», то есть сберегают тепло при температурах гораздо ниже 25°С.

Учитывая общую глобализацию, взаимопроникновение капиталов и технологий, активную внешнюю торговлю, производители теплоизоляции указывают, как правило, оба коэффициента: λ10 и λ25, что позволяет оценить «устойчивость» теплоизоляционного материала к изменению температуры. Как правило, чем материал менее плотный, тем разница между λ10 и λ25 больше. Но оба эти коэффициента теплопроводности, по сути, лишь характеристики теплоизоляционных материалов, произведенных на заводе, упакованных в пачки и сложенных на складе.

Для теплотехнического расчета необходима величина расчетного значения коэффициента теплопроводности при условиях эксплуатации А и Б по СП 50.13330.2012 «Строительная климатология» — λА и λБ. Эти значения определяются при 25°С (298°К) и при разном расчетном массовым отношением влаги в материале. Для минеральной ваты это 2% и 5% соответственно. Для других материалов массовое отношение влаги может быть иным. СП «Строительная климатология» рекомендует большинства территорий условия эксплуатации Б. Поэтому, когда мы спрашиваем: «Какая лямбда у ФАСАД БАТТС ЭКСТРА?», в абсолютном большинстве случаев нас интересует именно λБ. Здесь пока шла речь о теплоизоляционных материалах, эксплуатируемых в природных условиях, так называемой, строительной теплоизоляции.

Отдельно надо сказать о теплоизоляционных материалах, работающих при повышенных или пониженных температурах. Это, так называемая, техническая изоляция, используемая для поддержания необходимой температуры при различных технологических процессах. Так, например, для навивных минераловатных цилиндров, предназначенных для теплоизоляции горячих трубопроводов, определяются коэффициенты теплопроводности при температурах до 350°С. Они так и обозначаются: λ100, λ125, …, λ300, λ350. Для других видов технической изоляции определяются свои коэффициенты теплопроводности в зависимости от назначения и условий применения.

Таким образом, необходимое расчетное значение коэффициента теплопроводности λнеобходимое определяется назначением и условиями эксплуатации и является обязательной технической характеристикой теплоизоляционного материала.

Теплопроводность материалов. Как считают? Сравнительная таблица на сайте Недвио

Ответы на любые вопросы на тему строительства, недвижимости, жилого права и ремонта.

Все, что нужно знать, чтобы стать счастливым обладателем квартиры или загородного дома.

Можно ли построить энергоэффективный дом из газобетонных блоков?

Обустройство участка с нуля. С чего начать?

Какие раковины для кухни самые прочные?

В чем прелесть зимнего сада в своем загородном доме?

Оклейка обоями бревенчатого дома. Можно или нет?

Дизельные обогреватели. Как работают? Какие бывают?

Как сделать нормальный подъезд (дорогу) к своему участку (дому)?

Можно ли сделать самому смесь для выравнивания полов?

Какие шторы выбрать для нестандартного окна?

Можно ли построить кровлю из сэндвич-панелей?

Можно ли перевести землю из сельхоз назначения в коммерческую, если она в собственности?

Ландшафтные работы. В какой последовательности (порядке) их нужно делать?

Могу ли я на своем участке спилить верхушку ели?

Микробы и бактерии. В каких местах дома они могут быть?

Почему у дач такой разброс цен? Почему одни продаются за миллионы, а другие за сотни тысяч?

Коттеджи рядом с горнолыжными курортами. Отдых на горных лыжах в Подмосковье

Какой порядок нанесения штукатурки на стены?

Какие семена газона лучше посеять вокруг загородного дома?

Что такое Ингибиторы пара для стен и перекрытий?

Как правильно штукатурить гипсокартон?

Каковы оптимальные размеры детской комнаты для двоих детей?

Как лучше расположить коммуникации в санузле?

Печь для бани. Какую мощность лучше выбрать?

Почему заборы с полимерным покрытием служат дольше?

Как обеспечивается пожарная безопасность жилых домов?

Чем лучше закрыть окна панорамной лоджии? Чтобы не было темно и было прохладно?

Как улучшить шумоизоляцию комнат в доме?

Теплопроводность строительных материалов стала популярной темой в последние годы. Это связано с тем, что люди стали чаще задумываться о том, как сэкономить на отоплении дома зимой, либо сделать их более экологичными (если они отапливаются на угле, мазуте или другом неэкологичном топливе).

Полагаем, многие из вас уже слышали, что одни материалы хорошо проводят тепло, а другие — не очень. Соответственно из одних дома получаются сразу теплыми, а из других — их обязательно нужно утеплять. Но как же все это считают? По каким критериям и формулам? Об этом мы расскажем вам в данной статье.

Коэффициент теплопроводности Лямбда. Что это такое?

Коэффициент λ (лямбда) — это, пожалуй, наиболее важный параметр всех теплоизоляционных материалов. Его значение указывает на то, сколько тепла материал может пропускать через себя. То есть его показатель теплопроводности.

Чем ниже значение коэффициента λ (лямбда), тем меньше проводимость материала и, следовательно, он лучше изолирован от тепловых потерь. Это означает, что при одинаковых условиях больше тепла будет проходить через вещество с большей теплопроводностью.

Как же высчитывается этот коэффициент? Согласно второму закону термодинамики, тепло всегда уходит в область более низкой температуры. Для тела в форме теплопроводного кубоида в стационарных условиях количество передаваемого тепла зависит от вещества, пропорционально поперечному сечению тела, разности температур и времени теплопередачи.

Таким образом формула расчет будет выглядеть так:

  • λ (лямбда) — коэффициент теплопроводности;
  • ΔQ — количество тепла, протекающего через тело;
  • t — время;
  • L — длина тела;
  • S — площадь поперечного сечения корпуса;
  • ΔT — разность температур в направлении теплопроводности;
  • d — толщина перегородки.

За единицу измерения теплопроводности принимается система СИ — [Вт / (м · К)]. Она выражает количество теплового потока через единицу поверхности материала заданной толщины, если разница температур между двумя его сторонами составляет 1 Кельвин. Измеряют все эти показатели в специальных строительных лабораториях.

Теплопроводность материалов. Как считают? Сравнительная таблица

От чего зависит теплопроводность?

Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.

Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.

Теплопроводность материалов. Как считают? Сравнительная таблица

Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.

В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.

Значения теплопроводности для различных материалов

Сравнить, насколько тот или иной материал может пропускать тепло, вы можете воспользовавшись данной таблицей:

Теплопроводность [Вт / (м · К)]

Войлок, маты и плиты из минеральной ваты

0,16 — 0,3 (сосна и ель), 0,22 — 0,4 (дуб)

Н ержавеющая сталь

Применение коэффициента теплопроводности в строительстве

В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.

Теплопроводность материалов. Как считают? Сравнительная таблица

В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.

Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.

Важно: коэффициент теплопроводности лямбда зависит от плотности материала, поэтому при покупке, к примеру, пенополистирола, обратите внимание на вес продукта. Если вес слишком мал, значит плиты не имеют заявленной теплоизоляции. Добавим, что производитель обязан указывать заявленное значение коэффициента теплопроводности на каждой упаковке.

Какой же строительный материал самый теплый?

В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.

Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:

Теплопроводность материалов. Как считают? Сравнительная таблица

А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).

Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы. Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов. Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.

Разница между теплопроводностью и теплопередачей

Теплопроводность материалов. Как считают? Сравнительная таблица

Помимо коэффициента теплопроводности Лямбда существует также коэффициент теплопередачи U . Они звучат похоже, но обозначают совершенно разные вещи.

Так, если коэффициент теплопроводности является характеристикой определенного материала, то коэффициент теплопередачи U определяет степень теплоизоляции стены или перегородки. Проще говоря — коэффициент теплопроводности является исходным и напрямую влияет на значение коэффициента теплоотдачи U.

Если вам интересно получить больше информации на эту тему, а также узнать: какими материалами лучше всего утеплить ваш дом, в чем отличия между разными типами утеплителей, мы советуем прочитать эту статью.

Коэффициент теплопроводности λ мин. утеплителя

У меня такой вопрос. Теперь в ГОСТ 9573-2012 вместо одного значения лямбда теперь дается 3 разных — для 10, 25 и 125 град цельсия.
Какую величину брать? Какая приведена в СП 50.13330.2012 "Тепловая защита зданий"? для 25 град?

Заранее спасибо за ответы

Евгений Сайфутдинов
Посмотреть профиль
Найти ещё сообщения от Евгений Сайфутдинов
Bonussandro
Посмотреть профиль
Найти ещё сообщения от Bonussandro
предназначенные для тепло- и звукоизоляции ограждающих строительных конструкций жилых (в т.ч. индивидуальных), общественных и производственных зданий и сооружений в условиях, исключающих контакт изделий с воздухом внутри помещений, для изготовления трехслойных панелей, а также для тепловой изоляции промышленного оборудования с температурой изолируемой поверхности от минус 60 °С до плюс 400 °С

Здравствуйте!
В справочных данных производителя теплопроводность минваты Изоруф-В дана в Вт/м.К . А в нормативах требуется в Вт/м.ºС
Как перевести 0,045 в Вт/м.ºС ?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *