Основные положения индукционного нагрева.
Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.
Описание метода
Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно — это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).
Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.
На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.
Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.
Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.
Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.
Высокоскоростной разогрев или плавление любого электропроводящего материала.
Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.
Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.
За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).
Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.
Удобство эксплуатации за счёт небольшого размера индуктора.
Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.
Легко провести местный и избирательный нагрев.
Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).
Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.
Установки индукционного нагрева:
На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.
Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.
Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
— повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
— применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.
Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.
Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.
Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.
Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.
На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.
Недостатки трёх точки:
Низкий кпд (менее 40 % при применении лампы).
Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.
При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.
При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.
Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.
Недостаток многоконтурных систем — повышенная сложность и возникновение паразитных колебаний УКВ-диапазона, которые бесполезно рассеивают мощность и выводят из строя элементы установки. Также такие установки склонны к затягиванию колебаний — самопроизвольному переходу генератора с одной из резонансных частот на другую.
Современные твч—генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать
а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.
Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания — заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается — это может привести к «разносу» генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).
Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).
Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).
При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.
При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).
Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов. Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).
В идеальном случае полное сопротивление контура равно бесконечности — схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.
Последовательный колебательный контур – резонанс напряжений.
Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает. Вывод: В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально. В последовательном контуре наоборот — напряжение стремится к нулю, а ток максимален.
Индукционный нагрев
Индукционный нагрев это беспламенный, бесконтактный метод нагрева, который может превратить точно определенный участок металлического стержня в вишнево-красный цвет за секунды. когда в индукционной катушке протекает переменный ток, вокруг катушки создается переменное поле электромагнитной индукции, циркулирующий ток ( индуцированный ток, вихревой ток) генерируется в заготовке (проводящем материале), тепло выделяется, когда вихревой ток течет против сопротивления материала.
Индукционный нагрев это быстрая, чистая, не загрязняющая окружающую среду форма нагрева, которая может использоваться для нагрева металлов или изменения свойств проводящего материала. Сама катушка не нагревается, и эффект нагрева находится под контролем. Технология полупроводниковых транзисторов значительно упростила индукционный нагрев, экономически эффективный нагрев для областей применения: индукционная пайка, термообработка, индукционная плавка, усадочная арматура, индукционная ковка и т. Д.
Индукционный нагрев происходит в электропроводящем объекте (не обязательно магнитной стали), когда объект находится в переменном магнитном поле. Индукционный нагрев обусловлен гистерезисом и потерями на вихревые токи.
Точно разработанные индукционные катушки в сочетании с мощным и гибким индукционным источником питания обеспечивают воспроизводимые результаты нагрева, соответствующие желаемому применению. Индукционные источники питания, разработанные для точной количественной оценки нагрева материала и реагирования на изменения свойств материала во время цикла нагрева, делают реальностью достижение различных профилей нагрева с помощью одного приложения нагрева.
Цель индукционного нагрева возможно, затвердеть деталь для предотвращения износа; сделать металлический пластик для ковки или горячей штамповки желаемой формы; паяйте или спаяйте две части вместе; расплавить и смешать ингредиенты, которые поступают в жаропрочные сплавы, что делает возможным использование реактивных двигателей; или для любого количества других приложений.
Индукционный нагрев
ИНДУКЦИОННЫЙ НАГРЕВ — это промышленный нагрев металлических материалов (проводников), помещенных внутрь катушки индуктивности (индуктора) промышленной частотой от 50 Гц. Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) деталь размещается в индукторе, который сделан из круглой или квадратной трубки (обычно медной). ZAVOD RR — индукционные системы нагрева (ТВЧ) и индукционный нагрев металла от профессионалов!
Содержание
Индукционный нагрев металла
Индукционный нагрев металла сочетает в себе частоту, температуру, скорость и контроль производственного процесса. В принципе индукционного нагрева лежит закон Фарадея. деталь из металла помещается в индуктор, внутри ее возникает вихревой ток, который стремится к наружным стенкам.
То есть тепло возникает прямо в предмете (металлической заготовке), оставляя все вокруг холодным, что является несомненным преимуществом данного способа нагрева. Глубина нагрева зависит от частоты индукционного нагревателя, при этом металлическая деталь может располагаться в изоляции от источника питания.
Тепло в металлической заготовке образуется не равномерно по всему сечению, но экспоненциально спадает по мере удаления от поверхности из-за ослабления воздействия магнитного поля. Этот процесс характеризует особая физическая величина — глубина проникновения магнитного поля (по сути, толщина поверхностного слоя предмета, в котором внешнее магнитное поле спадает до нуля). Эта величина зависит от частоты тока индуктора и от удельного сопротивления и относительной проницаемости материала заготовки при рабочей температуре.
Индукторы для индукционного нагрева
Поскольку эффективность нагрева материала меняется в зависимости от соотношения внутреннего диаметра катушки индуктора и диаметра заготовки, не выгодно использовать один индуктор для большого диапазона диаметров.
Если вы хотите заказать индукторы для индукционного нагрева, нужно иметь в виду, что низкое значение соотношения диаметров используется, как правило, для поверхностной закалки, а когда требуется, чтобы материал был прогрет равномерно.
ZAVOD RR изготовит индукторы для индукционного нагрева с оптимальными размерами заготовки (которая также влияет на величину напряженности электрического поля в нагреваемом объекте). Направляйте чертежи деталей, индуктор стоит от 15 000 рублей, срок изготовления 14 рабочих дней.
Частота индукционного нагрева
Нагрев заготовок производится токами высокой частоты и начинается с частоты 50 Гц. Для подбора индукционного нагревателя, необходимо знать частоты индукционного нагрева. От выбора средней, сверхвысокочастотной или промышленной частоты будет зависеть, на какую глубину будет проникать индукционный ток. Энергетическую эффективность индукционного нагрева можно улучшить с использованием тока трех частот.
Частота индукционного нагрева индукционного нагревателя бывает:
- установки 50 Гц ( промышленной частоты ), которые питаются непосредственно от сети или через понижающие трансформаторы;
- сверхвысокочастотные частоты (500-10000 Гц), которые получают питание от преобразователей частоты;
- высокочастотные частоты (66 000 — 440 000 Гц и выше), питающиеся от ламповых электронных генераторов.
Индукционные системы нагрева
Таким образом, система индукционного нагрева состоит, как минимум, из генератора, преобразующего сетевое питание в ток, необходимый для работы установки, и индуктора, передающего энергию для нагрева. Как правило, при этом еще необходим резонансный контур для согласования характеристик индуктора и генератора. Для выполнения более сложных задач необходима более сложная система, включающая закалочную машину, систему охлаждения и т.п.
Индукционный нагрев ТВЧ труб и валов
Индукционный нагрев ТВЧ труб на первый взгляд кажется дорогостоящим из-за цены на оборудование, но на самом деле позволяет при минимальных затратах на электроэнергию и высокой скорости нагрева (что уже есть экономия) получить отличные результаты при проведении множества работ: снятие и нанесение покрытия, термообработка сварных швов, сгибание при изготовлении трубопровода и многое другое.
Индукционный нагрев ТВЧ валов позволяет производить операции по ТВЧ закалки. ТВЧ нагрев валов может производиться на глубину до 1-2 мм (поверхностный ТВЧ нагрев) либо на глубину до 5 мм (глубокая закалка ТВЧ). Глубина зависит от выбора индукционного нагревателя и правильного подбора его мощности.
Что подверглось обработке током высокой частоты, можно эксплуатировать гораздо дольше и при более неблагоприятных внешних воздействиях, индукционный нагрев ТВЧ труб и валов отличается :
- возможность бесперебойной круглосуточной эксплуатации;
- быстрая настройка и подключение;
- качественный равномерный нагрев;
- малые габаритные размеры.
Принцип индукционного нагрева
В чем же принцип индукционного нагрева? И так, суть индукционного нагрева заключается в том, что в переменное магнитное поле индуктора, питающегося от генератора высокой частоты, помещается нагреваемый объект (проводник). Раз проводник в переменном поле, то в нем обязательно возникнет электродвижущая сила, пропорциональная скорости изменения магнитного потока, которая вызовет вихревые токи Фуко, которые, в свою очередь (по закону Джоуля-Ленца), вызовут нагрев заготовки, потому что у нее есть электрическое сопротивление. Элементарный контур будет работать продуктивно и долго, если правильно настроить частоту.
Применение индукционного нагрева
Разнообразное применение индукционного нагрева, обусловлено его свойствами и функциями, облегчающими технологический процесс, позволяющий его максимально автоматизировать и повысить качество результатов работы. Практическое применение нагрева:
Индукционный нагрев
Индукцио́нный нагре́в, нагрев токопроводящих (в основном металлических) тел и ионизированных газов в результате выделения теплоты вихревыми (индукционными) токами , возбуждаемыми переменным электромагнитным полем . Обеспечивает бесконтактный способ передачи энергии от источника электромагнитного поля ( индуктора ) в нагреваемое тело с преобразованием её в тепловую непосредственно в теле. Наиболее эффективный способ нагрева.
При индукционном нагреве теплота, выделяющаяся в нагреваемом теле (по закону Джоуля – Ленца ), зависит от его размеров и физических свойств, частоты и напряжённости магнитного поля. Особенностью индукционного нагрева является неравномерное распределение мощности в нагреваемом теле, обусловленное диссипацией энергии поля и затуханием электромагнитной волны . Такое затухание характеризуют эквивалентной глубиной δ э \delta_ <э>δ э (м), т. е. глубиной поверхностного слоя плоского тела, в котором выделяется 86,5 % мощности электромагнитной волны: δ э ≈ 500 ρ / ( μ r ⋅ f ) \delta_ <э>\approx 500 \sqrt <\rho/(\mu_
Индукционный нагрев применяют:
в индукционных нагревательных установках – для нагрева заготовок под пластичную обработку (глубинный или сквозной индукционный нагрев) и деталей под химико-термическую обработку (локальный или поверхностный индукционный нагрев), в том числе под поверхностную закалку токами высокой частоты;
в индукционных печах – для плавки чёрных и цветных металлов и сплавов , а также зонной плавки , плавки во взвешенном состоянии, для получения низкотемпературной плазмы , получаемой в плазмотроне . Индуктор (основной элемент конструкции индукционных установок и печей) создаёт переменное магнитное поле (напряжённостью 10 5 –10 6 A/м).
Нагреваемый материал может быть в виде твёрдого массивного тела (в индукционных нагревательных установках), жидкого тела (в индукционных плавильных печах) и ионизированного газа (в СВЧ плазмохимических установках). Первая промышленная индукционная печь для подогрева жидкой стали (до 80 кг) в открытом горизонтальном кольцевом канале введена в эксплуатацию в Швеции в 1900 г., в СССР такие печи начали строить в 1930–е гг.
Индукционные нагревательные установки
В индукционных нагревательных установках используют в основном индукторы 2 типов.
круглого или квадратного поперечного сечения для нагрева заготовок по всей длине;
щелевые и овального сечения для местного нагрева концов длинных заготовок;
с поперечным магнитным полем (для листового материала);
с замкнутым магнитопроводом (для кольцевых заготовок).
одновитковые (для внешних цилиндрических поверхностей);
петлевые, зигзагообразные и в виде плоской спирали (для плоских поверхностей);
кольцевые соленоидные (для внутренних цилиндрических поверхностей).
Через отверстия в индукторе или с помощью спрейерного устройства на поверхность закаливаемой детали подают охлаждающую жидкость (воду, масло, различные эмульсии).
Индукционные плавильные печи
Индукционные плавильные печи могут быть канальными, работающими на промышленной частоте, вместимостью до 150 т и мощностью до 4,0 МВ ⋅ \cdot ⋅ А, и тигельными – вместимостью на средней частоте до 25 т и на промышленной частоте (при жидкой завалке) до 60 т.
1. В канальной печи температура металла в ванне (шахте) повышается за счёт теплопередачи от жидкого металла, находящегося в канале. Один или несколько вертикальных либо горизонтальных каналов (прямоугольного или круглого сечения), расположенных в огнеупорной футеровке – т. н. подовом камне, охватывают замкнутый магнитопровод с многовитковым цилиндрическим индуктором. В канале жидкий металл с более высокой температурой под действием электромагнитных сил и свободной тепловой конвекции интенсивно циркулирует, поступая через устье канала в ванну (шахту).
Индукционные канальные печи применяют в основном в цветной металлургии для непрерывных технологических процессов в качестве плавильных агрегатов и миксеров.
2. В тигельной печи металл находится в огнеупорном тигле , расположенном внутри цилиндрического многовиткового индуктора. Отдельные разомкнутые магнитопроводы в качестве ферромагнитных экранов защищают кожух печи от создаваемых индуктором электромагнитных волн. Энергия затрачивается на нагрев металла и его интенсивное перемешивание. В тигле возникает двухконтурная циркуляция металла с образованием выпуклого мениска (высотой 5–15 % от глубины металла), что затрудняет создание шлакового слоя и ограничивает удельную мощность (не более 300 кВт/т). Тигельные печи взрывоопасны (из-за невысокой стойкости футеровки тигля), их оснащают сигнализатором состояния футеровки.
Индукционные тигельные печи широко распространены в сталеплавильном производстве :
для периодической работы при переплаве легированных сталей ;
для плавки высококачественных сталей – вакуумные и индукционно-плазменные печи;
для выплавки особо чистых металлов и сплавов – печи с водоохлаждаемым («холодным») тиглем в виде электроизолированных секций-труб (т. н. секционированный тигель).